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EXTREME VALUE THEORY AND DEPENDENCE T -t

by M.R. Leadbetter | __Availability Codes

Department of Statistics
University of North Carolina ’:{—- j
Chapel Hill, N.C. 27514

Abstract. The purpose of this paper is to give a very brief account of some of the
essential ideas underlying classical extreme value theory, and to see how these are
used (modified as necessary) for dependent cases. In particular it will be shown how
the classical theory still applies for "moderately dependent" stationary sequences,
but that under higher local dependence, clustering of high values occurs, requiring
modifications of tie theory especially as it involves order statistics other than the

AR ML Y et gt Bl o Sk Sl il
S DI S N O R N

At Sl A S ral ol el gl o

ATCRST TN For
ETIS GRAZI
DTIC TA3B
Urannounced
Jistification

. _.gi;tri_t?_uﬂvw _ jL

Avail and/or
Dist Special

prIT

Coepy
INSPECTE -

3

maximum. Underlying concepts (especially point process convergence results) are

emphasized.

1. Notation, and the Classical Theory.

Throughout we write Mn-m(gl,ﬁz,...,gn) for
any sequence {gﬂ} of random variables. If the
g, are i.i.d. with marginal d.f. F then Mn has
the d.f. P{M_<x}=F"(x) so that the distribut-
ion of Mn is precisely known if F is known.
However in practice F is not necessarily known
precisely, and approximations less dependent on
the exact form of F are useful. In this vein a
central contribution of the classical theory is
the following result which restricts the 'type"
of limiting d.f. which Mn may have (under linear

normalizations):

Theorem 1.1 (Extremal Types Theorem). Let

Mn= max(El,gz,...,gn), where Ei are i.i.d,

random variables. If for some constants

a >0,b , we have
n n
(1.1) Pla M -b) <x} ¥ Gx)

for some non-degenerate d.f. G, then G is one

of the '"three extreme value types':

Type I: G(x) = exp(-e "), -w<x<m;

o,
Type 11: G(x) = {exp(-x-a). for some a> 0,

(family)
according as x < 0 or x>0
a
Type 111: G(x) = f‘l”‘P('(”‘) ), for some a>0,
(family) according as x < O or x>0

Research supported by the Air Force Office of
Scientific Research Contract F49620 82 C 0009.

In these d.f.'s x,may be replaced by ax+b for
any a>0,b. This is consistent with the term-
iology we use that two d.f.'s G,H are of the
same type if G(x) = H(ax +b) for some a>0,b.

The classical theory provides domain of attract-
ion criteria determining the type of limit in
terms of the general behaviour of the tail i-fF
of thed.f. F (see [S]). Thus Equation (1.1) may
often be used to provide an approximation for
the distribution of Mn when n is large. Obvious-
ly relevant questions of rates of convergence
and estimation of the normalizing constants in
practice are not part of this paper (see (5]

and references therein for discussions of

these topics).

While no detailed proof of Theorem 1.1 can be

given here, it is useful to see the principal

ideas involved. These can be grouped into the
following two packages:

Package I: The class of d.f.'s G which may
occur as limits in Theorem 1.1 are precisely
the max stable d.f.'s i.e. d.f.'s G such that
Gk is of the same type as G (Gk(x) =G(akx+ Bk)

for some ak>0.81, for each k=1,2,....

Package I1: A d.f. G is max stable if and only

if it is one of the three extreme value types.

The result of Package I follows trivially for

the i.i.d. sequence considered by noting that
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(1.1) may be written as F"(x/an-rbn)-*G(x) from
which it follows, on replacing n by nk, that

(1.2) P(ank(Mn'bnk) < x}-»GI/k(x) as n+w

for each k=1,2,.... A well known result of
Khintchine (cf. [5 Theorem 1.2.3]) states that if
a sequence (here Mn ) has limits under more
than one linear normalization, they must be of

1/k

the same type, so that G is of the same type

as G, from which max stability is immediate.

Package Il requires a longer proof but it
should be noted that this is totally non-probab-
ilistic and does not involve the original i.i.d.
sequence in any way (see [5 Theorem 1.4.1]).
Hence Package II applies equally well to non

i.i.d. situations.

Theorem 1.1 is the central result of the
classical theory, though the use of linear
normalizations is coming more into question.

In fact (1.1) may be written as
(1.3) PM_ < un}*e'T as n+o,

where u = x/an‘ bn' T = -logG(x). This suggests
the possibility of using e.g. functions u =
un(x) which are not necessarily linear in x.
Further, for any sequence of constants {un}
(dependent on a parameter x or not) (1.3) may
be written as Fn(un)-*e'r and by taking logs

one sees simply that
(1.4) n[l-F(u“)]-»'r as n+o

The converse result is just as easily shown
giving the following simple but important

lemma.

Lemma 1.2 Let {un} be any real sequence, and
0 <t <w Then (1.3) and (1.4) are equivalent
for the i.i.d. sequence {En} with d.f. F.

We shall use the notation un(r) to denote any
sequence satisfying (1.4). It is of interest
(and makes the notation more compelling) to
note that if un(r) exists for one t with
O<t<w , it exists for all sucht (and this
happens if and only if (1-F(x))/(1-F(x-)) » 1

as x*xF (see [S, Theorem 1.7.13)]), vhere

R o S — B s aaCL e A et 2t Wit i amin dhan A Shen 4

xF(i =) is the upper endpoint of the d.f. F.)

Lemma 1.2 is central in the consideration of
domains of attraction. But it is also basic in
showing how the asymptotic distributions of
extreme order statistics are determined by that
for the maximum. To see this let Sn denote the
number of exceedances of the level v by
51""’£n’ i.e. the number of i such that
Ei>ljn, 1<1i<n. Sn is clearly a binomial
r.v. with parameters (n, P 1- F(un)) so that
if (1.4) holds, np ~+vand S has a Poisson o

limit with mean T, i.e. P(Sn= r}+e Tt/

(k) is the kth
largest of 51 ceee s then Mr(‘k) <u, when there
are no more than k-1 values of gi greater than

Now it is easily seen that if M

u,, i.e. S <k-1, so that
k-1
PN <} = pis < k1) - § e T
r=0
In particular if (1.1) holds (so that Mn has
the asymptotic distribution G) then the ident-
ification u, * x/an + bn
1.2 show that

= -log G(x) and Lemma

* (k) k-1 r
(1.5) P{a (M -bn)f_x}-»G(X)rZo(-logG(X)) /T

Thus the asymptotic distribution for M deter-
mines that for each M( ) (using the same

normalizing constants as Mn)

The Poisson property of exceedances may be
pursued further with advantage. Specifically
let un-un(-r) satisfy (1.4) for some 1> 0.
Write Nrl for the point process on the interval
(0,1] having an atom (event) at each point i/n
for which Ei.>un' That is a time scale change
by 1/n is made, and converts an exceedance at
i (£i> un) to a point at i/n in [0,1]. Nrl may
be called the exceedance point process for the

level u,y If Nn(B) denotes the number of atoms
of Nn in the subset B of [0,1], and (1.4) holds,
it is readily shown that if B is an interval
then Nn(B) is asymptotically Poisson with mean
T m(B) where m(B) is the length of B. Further

Nn(Bl)and N (B,) are clearly independent when

Bl and 82

are disjoint. This suggests that the
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point process Nn is taking on a Poisson character
as n increases and indeed it may be shown by
such consideration that if (1.4) holds then full

weak convergence holds,

d
(1.6) Nn + N as n+ o

where N is a Poisson Process on [0,1] with

intensity Tt.

A harvest of corollaries may be reaped from this
and related results involving more than one
level. In particular the asymptotic joint dis-
tritution of any group of extreme order statis-
tics and their locations may be obtained. In
the i.i.d. case these results may be also
obtained directly but the point process approach
is illuminating, and most useful in dependent

cases to be considered next.

2. Stationary Sequences and the Extremal Types
Theorem.

Turning now to dependent situations we consider

the case of a {g"} which is strictly stationary

in the standard sense that its finite dimension-

al distributions F, ceeny (xl...xp)-

1
P{Eilixl...ﬁi ﬁxp} are such that Fil*j"‘ip‘j =
Fil...ip for any choice of p, 1)...1 , j.

Other cases (e.g. Markov-cf. [7], [8]) may be
treated, but stationary sequences are adequate

to illustrate the effects of dependence.

As far as the Extremal Types Theorem is concer-
ned, Loynes ([ 6]) took the first and most
significant step away from independence by
showing that the result remains true under
strong mixing assumptions. That is if {sn} is
stationary and strongly mixing and (1.1) holds
for some non-degenerate G, then G must be of
extreme value type. It is obvious from Loynes'
proof that the full force of strong mixing is
not required and weaker assumptions will suffice.
The following condition "D(un)" is defined with
respect to a given sequence {un} and is con-

venient and useful. (It is clearly possible to

weaken D(un) very slightly for the present

Ll

-
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purpose - as has been made explicit in [7], but

D(un) is useful in other contexts also. In the

following statement Fi ceey (u) is written for

1 p

F (u...u).

il i

Definition. If {un} is any real sequence, the
condition D(un) is said to hold if for any

1511“°£ip<31<12'”<Jp’i"’Jflpzlwe

have |Fi i . (un)
171 Jl...Jp,
- F, . (u)E, . (W) <a where
11...1p n Jl...Jp, n n,%
un,i +0 for some sequence 2n= o(n).

n
D(un) mildly restricts long range dependence

(and is satisfied e.g. for stationary normal
sequences under the very weak covariance con-
dition r, log n+ 0. A detailed discussion of
the condition may be found in [5]).

The Extremal Types Theorem then says that if
{En} is strictly stationary and satisfies (1.1)
and if D(un) holds for all sequences of the
form un=x/an¢bn (-»<x<x) then G is again of
extreme value type. The method of proof is
simply to show that such a G must be max stable
and hence of extreme value type as in the i.i.d.
case. The proof of max stability rests on the

following basic result:

Lemma 2.1 If D(un) holds for the stationary
sequence {En} {(and a given real sequence {un})
k
then P{Mniﬂn) -P (M
k=1,2,....

5un}->0 for any

[n/kl

It follows simply from (1.1) by using this
lemma (with nk replacing n and identifying u
with x/ano bn) that (1.2) holds and hence G is
The
proof of the lemma is achieved by a standard

max stable exactly as in the i.i.d. case.

type of argument used to ''reduce dependent to
independent cases (cf. [6] and earlier papers
in dependent central limit theory). Very
roughly in this case the integers 1...n are
divided into k consecutive groups and approximate
independence of the maxima on each is used.

This approximate independence is established via

D(un) by "snipping' an expanding but relatively
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small piece from each group to give the separa-
tion required for D(un), (cf. [ 5 Section 3.2

for details).

3. The Effect of Dependence on the Asymptotic
Distribution of Mn.

Again let {En} be stationary with marginal d.f.
F. Following Loynes, define the associated
independent sequence to be an i.i.d. sequence
(£} with the same d.f. F. Write M =
max(al,gz,...in). It is natural to ask whether

Mn has an asymptotic distribution if ﬁn does,
and convesely and, if both do, whether they are
of the same extremal type or related in some
specific way. This matter can be resolved in
unexpectedly explicit ways for most stationary

sequences, in terms of a single parameter.

As before let un(r) satisfy (1.4) for each

7> 0 so that P{i“l“iu“(r)}->e'T by Lemma 1.2.
Now Loynes ([6]) showed that for strongly

mixing sequences, if lim P{M <u (1)} exists
for all T it must have the form e O for some
8, 0<6<1.
D(un) - assumptions and indeed if the limit

This may also be shown under

exists for one T it exists for all T, and is
e 1 This 6 may be called the

extremal index of the process and exists under

for some 8.
wide conditions. For i.i.d. (and many station-
ary) sequences 6 =1, but all values of 8 in
[0,1] are possible, though 6 =0 is rather
pathological. 8=1 for a stationary normal
process satisfying the covariance condition
r, log n+0. An example of a case with 0<68<1

is the following.

Example 3.1 Let NysNges- be i.i.d. with d.f. H
and write Ejs max(nj.nj‘l). Then {En) is
stationary with d.f. F=H2 and easy calculation
shows that if un(r) satisfies (1.4) then

nit -H(un(r))l -+ t/2 and
P(M_ <u (1)] =P max(n,...n ) <u (1)}IP{n

iun(r)}_‘e‘T/z

so that (En} has extremal index 8=1/2,

Modifications of this example yield other values
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of ©.

The following result from [4] illustrates the
use of the index 6.

Theorem 3.2 Suppose that the stationary
sequence (En} has extremal index 0>0. Let
fvn} be any constants and 0<p<1. Then
P(ﬂnf_vn}-»o if and only if P{Mnivn}*pe .

This clearly exhibits the relations between Mn
and Mn. For example if there is an "i.i.d.
limit" G P{a (M -b ) < x}+G(x), then we can
wnt; v x/an + b“ and obtain P{an(Mn - bn) <x}
+ G (x). Thus the limiting d.f. for Mn is
just Ge. This is of the same type as G
(Ge(x) =G(ax + b)) as is easily verified for
each extremal distribution. The converse also
hoids so that if 6> O,Mn has an asymptotic
distribution if and only if Mn does, they have
the same normalizing constants,and the limits
are of the same type (indeed powers of each
other). If 8=1 the limits are identical (see

(4] for a complete discussion).

4, Poisson‘Results and Extreme Order Statistics
when O=1,

When 8 =1, the Poisson results for exceedances
go through as in the i.i.d. case. In parti-
cular, the number Sn of exceedances of u,
satisfying (1.4) by 51...£n is asymptotically
Poisson, leading to the same asymptotic distri-
bution (1.5) for Mik) as in the i.i.d. case.
This Poisson limit is best shown as a corollary
of Poisson convergence of the exceedance point

process Nn defined on [0,1] as in Section 1,

with points at those i/n for which £, > u,.

Spfcifically if un-un(r) satisfies (1.4),

P{Mn_g_un}-»e'r and hence P{Mniu“}*e"r by
Theorem 3.2 (6=1).
Nn([O,l])= 0 are clearly equivalent so that
PN, ((0,1]) = 0}+e T,
fact shows easily that P(Nn(s)s 0} -+

But the events (M <u },

The same argument in
e-rm(B)
where m is Lebesgue measure, for any finite
union B of subintervals of [0,1], so that
P(N“(B)- 0} »P{N(B) = 0} for such sets B, where

N is a Poisson Process on [0,1] with intensity




1. This and the easily proved fact that
E Nn(n) - Tm(B) = E N(B) are sufficient to show
that Nn ~ N in the full weak convergence

sense, by a theorem of Kallenberg [3, Theorem
4.7).

In particular § (-Nn([o,l])) is asymptoticaily
Poisson with mean t. If Mn has the asymptotic
distribution G as in (1.1) it follows readily

by the usual identification u_=x/a_+b_,
n n n
(x)
n
Indeed,

it may be shown by considering exceedances of

T=-log G(x) that the kth largest values M
again have the classical forms (1.5).

more than one level that joint distributions of
the Mﬁk) (and their locations) have their i.i.d.
forms when 6=1.

S. Clustering and its effect on Mik) when
0<8 <1,

The above discussion shows that when 6 =1 the
classical results hold without change. The
less usual - but still non-pathological - case
is where 0<8 <1, which we now consider. In
this case, which typically involves higher
local dependence of the sequence terms, clust-
ering of exceedances may occur. For instance,
it is readily seen that in Example 3.1, exceed-
ances of un(r) by 51 occur in (at least)
pairs. Correspondingly it is found that the
limiting point process has double points,
occurring at positions which form a Poisson

Process with intensity 1/2.

In general when 0< 9 < 1 exceedances tend to
occur in groups or clusters of stochastic size
and the limiting point process is "Compound
Poisson' consisting of multiple events of
random size occurring at points of [0,1] which

form a Poisson Process with intensity t/2.

As noted already the only effect on Mn of
taking (0 <)8< 1 is to replace the "i.i.d.
limit G by c°. However, the distribution of
other order statistics Mﬁk)
altered. This may be understood intuitively

are more radically

by noting that the maximum M“ is simply the
maximum of the greatest values in each cluster.

P N - el adut o

(2)

However e.g. Mn may be the second largest
value in the cluster when Mn occurs, or the
largest in some other cluster, so that cluster

structure becomes important.

In fact if the cluster size in the limiting
Compound Poisson Process has distribution

r(i), i=1,2... and if Mn has the asymptotic
distribution G as in (1.1), then the asymptotic
distribution for the kth largest Mﬁk) is

(k)
P{an(Mn - bn) < x}

k-1 k-1 i
+empre § § Lle GG iy
j=1 i=j j!

s
where m (i) is the j-fold convolution of the
cluster size distribution n(i). (These latter
may be writter as limits of probabilities

associated with the Ei's).

For completeness we state the main theorem
(due to Hsing) on which this is based. This
requires a modest strengthening of the D(un)
condition to a form A(un) which will not be
specified here (but is still of similar type,
and widely applicable - see [1] or {[2] for the

details and proof of the theorem).

Theorem 5.1 Suppose 7> 0 is constant and
8(u, (1)) holds. If the exceedance point process
N, converges in distribution to some point

process N, the later must be Compound Poisson
with Laplace transform

1
-8t/ [1-L(£(t))]dt
£ e-fde .e 0
where L is the Laplace Transform of some pro-
bability distribution 7 on (1,2,...) and
0<B<1.

Throughout this paper we have considered point
processes of exceedance of one level. However
as noted, joint distributions of order statis-
tics may be discussed by consideration of
"vector valued" point processes involving
exceedances of e.g. k levels un(rl)... un(r).
Alternatively a so called "complete convergence
result' may be used under slightly more

restrictive conditions) to obtain these results.

Such results typically involve point processes

PR g
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in the plane consisting of points at (j/n,

u;l(gj)) where u;l

un(r). In simple cases a Poisson limit holds

is the inverse function of

(in the plane) leading to all the joint
asymptotic distributions of order statistics
(cf. [5, Sec. 5.7]. In cases with more local
dependence (6 < 1) the limit involves a
point process with clustering which can be ex-
plicitly defined cf.([1])in a manner analogous

to Theorem 5.1.
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